If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2+10p+6=0
a = 3; b = 10; c = +6;
Δ = b2-4ac
Δ = 102-4·3·6
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{7}}{2*3}=\frac{-10-2\sqrt{7}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{7}}{2*3}=\frac{-10+2\sqrt{7}}{6} $
| 19h=14+5h | | 2x^2-42x-125=0 | | 5x-9=8-27 | | 20-11r+20=-20-15r | | 8x+2-6x-2=10 | | 3n+20=5n-18 | | -9x-1-6x-2=10 | | 3x-4=-5x-16 | | 35+70+4x+2=180 | | 2x+8+6x-3=3x | | 10y+10=-7-6y | | -17.6k=6.66-17k | | 3x-3+4=2-x+3 | | 10+11c=-16+14c-13 | | 3x+3=-x+5 | | 3x+1+7x-4+90=180 | | 3x-10=152 | | 3x+1=-x+5 | | 3z-1=-7` | | -7k-16=-9k+20 | | 3x+1=-x-1 | | 3x-3+4=2-x-3 | | 16.59-17.6f=-13.2f+14.83 | | 3x-1+4=2-x+3 | | 12=-4(-6x-12) | | 7u+5=8u | | -9m+17=-13m-19 | | 12=e-(-18) | | x3+2x-3=0 | | 4x+3=51x= | | 3(n–5)+4=19 | | 8y−7=3y+13 |